8 research outputs found

    Statistical and Dynamic Models of Charge Balance Functions

    Full text link
    Charge balance functions, which identify balancing particle-antiparticle pairs on a statistical basis, have been shown to be sensitive to whether hadronization is delayed by several fm/c in relativistic heavy ion collisions. Results from two classes of models are presented here, microscopic hadronic models and thermal models. The microscopic models give results which are contrary to recently published pi+pi- balance functions from the STAR collaboration, whereas the thermal model roughly reproduce the experimental results. This suggests that charge conservation is local at breakup, which is in line with expectations for a delayed hadronization. Predictions are also presented for balance functions binned as a function of Q_inv.Comment: 12 pages 6 figure

    Neutral pion cross section and spin asymmetries at intermediate pseudorapidity in polarized proton collisions at √s = 200 GeV

    Get PDF
    The differential cross section and spin asymmetries for neutral pions produced within the intermediate pseudorapidity range 0.8 < η < 2.0 in polarized proton-proton collisions at √s = 200  GeV are presented. Neutral pions were detected using the end cap electromagnetic calorimeter in the STAR detector at RHIC. The cross section was measured over a transverse momentum range of 5 < p[subscript T] < 16  GeV/c and is found to agree with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry A[subscript LL] is measured in the same pseudorapidity range and spans a range of Bjorken-x down to x ≈ 0.01. The measured A[subscript LL] is consistent with model predictions for varying degrees of gluon polarization. The parity-violating asymmetry A[subscript L] is also measured and found to be consistent with zero. The transverse single-spin asymmetry A[subscript N] is measured over a previously unexplored kinematic range in Feynman-x and p[subscript T]. Such measurements may aid our understanding of the onset and kinematic dependence of the large asymmetries observed at more forward pseudorapidity (η ≈ 3) and their underlying mechanisms. The A[subscript N] results presented are consistent with a twist-3 model prediction of a small asymmetry over the present kinematic range.United States. Dept. of Energy. Office of Nuclear PhysicsUnited States. Dept. of Energy. Office of High Energy PhysicsNational Science Foundation (U.S.

    Forward-backward multiplicity correlations for identified particles at STAR

    No full text
    Kinematic observables of charged particles from relativistic heavy-ion collisions are measured in search of quark-gluon degrees of freedom. Long-Range Forward-Backward multiplicity correlations (LRC) may be a signal for multiple partonic interactions in dense matter, as predicted by the Dual Parton Model (DPM), Color String Percolation Model (CSPM), and the Color Glass Condensate (CGC) picture. Previously, a strong LRC for inclusive charged hadrons was measured as a function of pseudorapidity gap (Δη) in Au+Au collisions at [special characters omitted] = 200 GeV, and were shown to decrease with decreasing centrality. In this dissertation, the forward-backward correlation strength is studied with respect to its particle species dependence (pions, kaons, protons and anti-protons), and is measured as a function of rapidity gap (Δy) in Au+Au collisions at [special characters omitted] = 200 GeV. The CGC picture, which describes particle sources as longitudinal flux tubes, predicts that the correlation will grow with centrality. Furthermore, fluctuations in the number of gluons at early times will produce a long range correlation strength significantly larger for pions than for baryons. A strong, long-range (Δy \u3e 1.0) correlation is measured for pions in central Au+Au collisions at [special characters omitted] = 200 GeV, which decreases with decreasing centrality. The measured small short-range correlation compared to pions for protons and antiprotons suggests their long-range component will also be small. The forward-backward multiplicity correlation measurements for identified particles indicate multiple partonic interactions in high-energy, central Au+Au collisions, and the possible formation of the quark-gluon plasma

    Hyperon Polarization along the Beam Direction Relative to the Second and Third Harmonic Event Planes in Isobar Collisions at <math display="inline"><mrow><msqrt><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>N</mi><mi>N</mi></mrow></msub></mrow></msqrt><mo>=</mo><mn>200</mn><mtext> </mtext><mtext> </mtext><mi>GeV</mi></mrow></math>

    No full text
    The polarization of Λ and Λ¯ hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at sNN=200  GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild pT dependence. The azimuthal angle dependence of the polarization follows the vorticity pattern expected due to elliptic and triangular anisotropic flow, and qualitatively disagrees with most hydrodynamic model calculations based on thermal vorticity and shear induced contributions. The model results based on one of existing implementations of the shear contribution lead to a correct azimuthal angle dependence, but predict centrality and pT dependence that still disagree with experimental measurements. Thus, our results provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization. Comparison to previous measurements at RHIC and the LHC for the second-order harmonic results shows little dependence on the collision system size and collision energy.The polarization of Λ\Lambda and Λˉ\bar{\Lambda} hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at sNN\sqrt{s_{NN}} = 200 GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild pTp_T dependence. The azimuthal angle dependence of the polarization follows the vorticity pattern expected due to elliptic and triangular anisotropic flow, and qualitatively disagree with most hydrodynamic model calculations based on thermal vorticity and shear induced contributions. The model results based on one of existing implementations of the shear contribution lead to a correct azimuthal angle dependence, but predict centrality and pTp_T dependence that still disagree with experimental measurements. Thus, our results provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization. Comparison to previous measurements at RHIC and the LHC for the second-order harmonic results shows little dependence on the collision system size and collision energy
    corecore